Bradykinin stimulates cAMP synthesis via mitogen-activated protein kinase-dependent regulation of cytosolic phospholipase A2 and prostaglandin E2 release in airway smooth muscle

Author:

PYNE J. Nigel1,TOLAN Deborah1,PYNE Susan1

Affiliation:

1. Department of Physiology and Pharmacology, University of Strathclyde, 204 George Street, Glasgow G1 1XW, Scotland, U.K.

Abstract

Bradykinin stimulates cAMP synthesis in cultured airway smooth muscle (ASM) cells. This occurs via a pathway that involves: (1) the protein kinase C (PKC)-dependent activation of mitogen-activated protein kinase (MAPK); (2) the MAPK-dependent phosphorylation and activation of cytosolic phospholipase A2 (cPLA2) and (3) the utilization of cPLA2-derived arachidonate by the cyclo-oxygenase pathway to produce prostaglandin E2 (PGE2). PGE2 is released and binds to cell surface receptors to stimulate intracellular cAMP synthesis. The signalling pathway was confirmed by the use of PD098059 [the inhibitor of MAPK kinase-1 (MEK-1) activation], AACOCF3 (an inhibitor of cPLA2) and indomethacin (an inhibitor of cyclo-oxygenase), which all reduced bradykinin-stimulated cAMP synthesis. Bradykinin also elicits the inhibition of approx. 60% of the total cAMP phosphodiesterase activity in the cell [Stevens, Pyne, Grady and Pyne (1994) Biochem. J. 297, 233-239]. This is likely to decrease the rate of cAMP degradation markedly and therefore to potentiate PGE2-stimulated cAMP synthesis. Acute treatment of ASM cells with PMA (a direct activator of PKC) also stimulated the MAPK-dependent phosphorylation of cPLA2. However, in contrast with bradykinin, PMA did not stimulate arachidonate release, suggesting that additional signals (e.g. Ca2+ ions) are required for phosphorylation by MAPK to activate cPLA2. PMA was also without effect on PGE2 release and cAMP synthesis. Evidence that PKC can also directly regulate adenylate cyclase was obtained by using cells pretreated with cholera toxin. Under these conditions, PMA stimulated cAMP synthesis independently of arachidonate metabolites. Furthermore the combined treatment of cells with PMA (to activate PKC) and PGE2 (to activate Gs) stimulated synergistic cAMP synthesis. This might be due to the presence of the type 2 adenylate cyclase, which is synergistically activated by Gs and PKC.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3