Arginine kinase evolved twice: evidence that echinoderm arginine kinase originated from creatine kinase

Author:

SUZUKI Tomohiko1,KAMIDOCHI Mika2,INOUE Naho1,KAWAMICHI Hozumi1,YAZAWA Yoichi2,FURUKOHRI Takahiro1,ELLINGTON W. Ross3

Affiliation:

1. Laboratory of Biochemistry, Faculty of Science, Kochi University, Kochi 780-8520, Japan

2. Hokkaido University of Education at Asahikawa, Asahikawa, Hokkaido 070-0825, Japan

3. Department of Biological Science and Institute of Molecular Biophysics, Florida State University, Tallahassee, FL 32306-4370, U.S.A.

Abstract

Arginine kinase (AK) was isolated from the longitudinal muscle of the sea cucumber Stichopusjaponicus. Unlike the monomeric 40 kDa AKs from molluscs and arthropods, but like the cytoplasmic isoenzymes of vertebrate creatine kinase (CK), the Stichopus enzyme was dimeric. To explore the evolutionary origin of the dimeric AK, we determined its cDNA-derived amino acid sequence of 370 residues. A comparison of the sequence with those of other enzymes belonging to the phosphagen kinase family indicated that the entire amino acid sequence of Stichopus AK is apparently much more similar to vertebrate CKs than to all other AKs. A phylogenetic tree also strongly suggests that the Stichopus AK has evolved from CK. These results support the conclusion that AK evolved at least twice during the evolution of phosphagen kinases: first at an early stage of phosphagen kinase evolution (its descendants are molluscan and arthropod AKs) and secondly from CK later in metazoan evolution. A comparison of the amino acid sequence around the guanidino specificity (GS) region (which is a possible candidate for the guanidine substrate recognition site in the phosphagen kinase family) of the Stichopus enzyme with those of other phosphagen kinases showed that the GS region of the Stichopus enzyme was of the AK type: five amino acid deletions in the flexible loop region that might help to accommodate larger guanidine substrates in the active site. The presence of the AK-type deletions in the Stichopus AK, even though it seems that the enzyme's most immediate ancestor was probably CK, strongly suggests that the GS region has a role in substrate specificity. Stichopus AK and presumably other echinoderm AKs seem to have evolved from the CK gene; the sequence of GS region might have been replaced by the AK type via exon shuffling. The presence of an intron near the GS region in the Stichopus AK gene supports this hypothesis.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3