Alkaline ribonuclease and ribonuclease inhibitor in mammary gland during the lactation cycle and in the R3230AC mammary tumour

Author:

Liu D K1,Williams G H1,Fritz P J1

Affiliation:

1. Department of Pharmacology, Milton S. Hershey Medical Center, Pennsylvania State University College of Medicine, Hershey, Pa. 17033, U.S.A.

Abstract

Alkaline RNAase (ribonuclease) and RNAase inhibitor were assayed to determine the potential role of the degradative process in regulating the amount of RNA in the mammary gland and mammary tumour. Very little free alkaline RNAase activity was found in the cytosol fraction of the mammary gland of virgin, pregnant, lactating or involuting Fischer rats. However, addition of p-chloromercuribenzoate to the assay medium revealed latent RNAase which, when expressed on a DNA basis, decreased during pregnancy and lactation. The cytosol latent RNAase is stable in 0.125 M-H2SO4. The non-cytosol RNAase activity also decreased during pregnancy and lactation. Addition of Triton X-100 produced slightly higher activity at all stages tested. The inhibitor activity in rat mammary gland was very low before pregnancy, increased gradually during pregnancy and more dramatically at parturition, continued to increase throughout lactation and returned to resting-gland values by the sixth day of involution. The increase during pregnancy may be due to the increased cellularity of the gland, whereas the gain during lactation was more than could be accounted for by increases in cell number. The R3230AC transplantable mammary tumour resembles the normal gland in early lactation with respect to both its cytosol and non-cytosol alkaline RNAase activities and its moderately high content of RNAase inhibitor. The relatively high inhibitor and low RNAase activities in both the gland of the lactating rat and in the tumour are of potential significance in maintaining high amounts of RNA and increased rates of protein synthesis in these tissues.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

Cited by 45 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3