Molecular profiling of the tumor microenvironment in glioblastoma patients: correlation of microglia/macrophage polarization state with metalloprotease expression profiles and survival

Author:

Gjorgjevski Marko1,Hannen Ricarda1,Carl Barbara1ORCID,Li Yu1,Landmann Emilie2,Buchholz Malte2ORCID,Bartsch Jörg W.1ORCID,Nimsky Christopher1ORCID

Affiliation:

1. Department of Neurosurgery, Philipps University Marburg, Baldingerstr., 35033 Marburg, Germany

2. Clinic for Gastroenterology, ZTI, Philipps University Marburg, Hans-Meerwein Str. 3, 35043 Marburg, Germany

Abstract

Abstract Due to poor prognosis of glioblastoma (GBM), there is an urgent need to develop new therapeutic strategies. Besides eliminating GBM tumor cells and stem cells, a novel therapeutic approach aims to target Glioma-associated microglia/macrophages (GAMs). We investigated the molecular profile of GAMs correlated with patient prognosis by exploiting M1/M2-like polarization markers in a cohort of 20 GBM patients. Using quantitative PCR (qPCR), the markers CXCL10 (M1) and CCL13 (M2) were validated in human macrophages and applied to a global analysis of GBM tissue. Furthermore, proteinase genes, known to be associated with GBM progression (ADAM8, MMP9, MMP14, ADAM10, ADAM17), were analyzed in correlation to M1/M2 markers. Notably, expression levels of ADAM10 and ADAM17 are significantly correlated with an M1-like phenotype and are positively associated to patient survival. Whilst ADAM8 mRNA expression was equally correlated with M1- and M2-like markers, genes for MMP9 and MMP14 are significantly associated with an M2-like phenotype and association to impaired prognosis in the GBM patient cohort. Thus, we provide a robust and reliable combination of qPCR markers to characterize global microglia/macrophage status and the associated proteinase profiles in GBM patients that can be used to analyze the tumor microenvironment, the patients’ prognosis and preselect those GBM patients for which targeting the microglia/macrophage population by repolarization might be beneficial.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry,Biophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3