Kinetic and inhibition studies on catechol-O-methyltransferase affinity labelling by N-(3,4-dihydroxyphenyl)maleimide

Author:

Piedrafita F J1,Fernandez-Alvarez E1,Nieto O1,Tipton K F2

Affiliation:

1. Instituto de Química Orgánica General del CSIC, Juan de la Cierva 3, 28006 Madrid, Spain

2. Biochemistry Department, Trinity College, Dublin, 2, Ireland

Abstract

Initial velocity and product inhibition studies have been performed on soluble catechol-O-methyltransferase which has been partially purified from pig liver. The results are consistent with an ordered reaction mechanism, in which S-adenosyl-L-methionine (AdoMet) is the leading substrate. The enzyme is irreversibly inhibited by maleimide derivatives in a biphasic manner, which suggests a differential reaction with two thiol groups. N-(3,4-Dihydroxyphenyl)maleimide, which has a reactive moiety (maleimide ring) and an affinity moiety (catechol ring), acts as an affinity labelling compound on the more reactive SH group; AdoMet and Mg2+ protect against this modification. Total protection of this SH group results in a pseudo-first-order inhibition of the enzyme, with the apparent rate constant being proportional to the inhibitor concentration. All the other maleimide derivatives studied inhibited the enzyme by reacting with one of the two SH groups in a non-specific manner. The reaction of the other, more reactive, SH group was either specific (active-site-directed) or non-specific, depending on the substituent present in the affinity moiety and also on the length of an intermediate chain of methylene groups present between this moiety and the reactive maleimide ring. In the presence of both AdoMet and Mg2+, 3,5-dinitrocatechol, a reversible inhibitor of the enzyme which is competitive with respect to the catechol substrate, protects the enzyme from inactivation by any of the maleimide derivatives. The adducts of these maleimide derivatives formed with dithiothreitol inhibit the enzyme reversibly, showing inhibition patterns that are consistent with the mechanism deduced from the initial velocity and product inhibition studies.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3