Prolyl-tRNA-based rates of protein and collagen synthesis in human lung fibroblasts

Author:

Hildebran J N,Airhart J,Stirewalt W S,Low R B

Abstract

Knowledge of the dynamics of collagen turnover requires information regarding rates of synthesis of this group of connective-tissue proteins. The relationship of various amino acid pools to the tRNA precursor pool used for protein synthesis is known to vary between different cell types and tissues, even for essential amino acids. We studied extracellular, intracellular and tRNA-proline pools in cultured human lung IMR-90 fibroblasts to determine the relationship between them as candidate proline precursor pools for total protein and collagen synthesis. Time-course experiments showed that the three proline pools attained distinctly different steady-state specific radioactivities (extracellular greater than intracellular greater than tRNA) at the extracellular proline concentration of 0.2 mM. The kinetics of radioisotope incorporation into cell protein and collagenase-digestible protein indicated that the intracellular free proline pool could not be used reliably as a precursor for calculating synthetic rates. However, tRNA-proline behaved isotopically as if it were the precursor and provided synthesis rates 2-3-fold higher than those calculated by using either free proline pool. The incorporation of labelled lysine and leucine was constant over a wide range of extracellular proline concentrations. Fractional rates of protein synthesis based on tRNA-amino acid were the same with [3H]phenylalanine as with [3H]proline. The specific radioactivity of cell-associated hydroxyproline reached a steady-state value 8-10h after radioisotope administration which matched the mean tRNA-proline specific radioactivity, suggesting that tRNA-proline is not isotopically compartmentalized. A model of cellular proline-pool relationship is presented and discussed.

Publisher

Portland Press Ltd.

Cited by 82 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3