A competitive inhibitor of phospholipase A2 decreases surfactant phosphatidylcholine degradation by the rat lung

Author:

Fisher A B1,Dodia C1,Chander A1,Jain M2

Affiliation:

1. Institute For Environmental Medicine, University of Pennsylvania School of Medicine, Philadelphia, PA 19104-6068

2. Department of Chemistry, University of Delaware, Newark, DE 19716, U.S.A.

Abstract

We have shown previously that radiolabelled phosphatidylcholine (PC) in liposomes or natural surfactant is removed from the alveolar space and metabolically recycled in a process that is stimulated by cyclic AMP (cAMP). In this study, we evaluated the effect of a transition-state phospholipid analogue (MJ33; 1-hexadecyl-3-trifluoroethylglycero-sn-2-phosphomethanol) that competitively inhibited acidic phospholipase A2 (PLA2) activity (pH 4.0) of lung homogenate by more than 97%, but had no effect on PLA2 activity at pH 8.5. MJ33 incorporated into unilamellar liposomes (dipalmitoyl PC/egg PC/cholesterol/phosphatidylglycerol, molar proportions 10:5:3:2) or co-sonicated with biosynthesized natural surfactant was instilled into the trachea of the anaesthetized rat; lungs were then removed for 2 h perfusion in the absence or presence of 0.1 mM-8-bromo cAMP. Total uptake for phospholipid was unchanged in the presence of the inhibitor MJ33. Degradation of labelled PC during 2 h perfusion in the absence of MJ33 was approx. 26% of that instilled for choline-labelled liposomal PC, 16% for liposomal PC labelled in the second fatty-acyl position, and 33% for choline-labelled natural surfactant. Degradation of PC was decreased by approx. 25-40% for each substrate in the presence of MJ33. Inhibition of lipid degradation depended on the mole fraction of MJ33 in the liposomes and was maximal at 1 mol%. These studies demonstrate a significant role for acidic Ca(2+)-independent PLA2 in the degradation of internalized alveolar PC, but further indicate that this enzyme accounts for a minor fraction of total lung PC metabolism.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

Cited by 65 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3