Affiliation:
1. Department of Chemistry and Biomolecular Sciences, Macquarie University, Sydney, NSW 2109, Australia
Abstract
The enzyme BchM (S-adenosyl-L-methionine:magnesium-protoporphyrin IX O-methyltransferase) from Rhodobacter capsulatus catalyses an intermediate reaction in the bacteriochlorophyll biosynthetic pathway. Overexpression of His6-tagged protein in Escherichia coli resulted in the majority of polypeptide existing as inclusion bodies. Purification from inclusion bodies was performed using metal-affinity chromatography after an elaborate wash step involving surfactant polysorbate-20. Initial enzymatic assays involved an in situ generation of S-adenosyl-L-methionine substrate using a crude preparation of S-adenosyl-L-methionine synthetase and this resulted in higher enzymatic activity compared with commercial S-adenosyl-L-methionine. A heat-stable stimulatory component present in the S-adenosyl-L-methionine synthetase was found to be a phospholipid, which increased enzymatic activity 3–4-fold. Purified phospholipids also stabilized enzymatic activity and caused a disaggregation of the protein to lower molecular mass forms, which ranged from monomeric to multimeric species as determined by size-exclusion chromatography. There was no stimulatory effect observed with magnesium–chelatase subunits on methyltransferase activity using His–BchM that had been stabilized with phospholipids. Substrate specificity of the enzyme was limited to 5-co-ordinate square-pyramidal metalloporphyrins, with magnesium-protoporphyrin IX being the superior substrate followed by zinc-protoporphyrin IX and magnesium-deuteroporphyrin. Kinetic analysis indicated a random sequential reaction mechanism. Three non-substrate metalloporphyrins acted as inhibitors with different modes of inhibition exhibited with manganese III-protoporphyrin IX (non-competitive or uncompetitive) compared with cobalt II-protoporphyrin IX (competitive).
Subject
Cell Biology,Molecular Biology,Biochemistry
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献