Affiliation:
1. Department of Rehabilitation, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, P.R. China
2. Department of Pediatrics, the First Hospital of Shijiazhuang, Shijiazhuang 050011, China
3. Department of Neurosurgery, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, P.R. China
Abstract
Abstract
The present study was undertaken to investigate the underlying mechanisms of long noncoding RNA OIP5-AS1 via regulating miR-410 to modulate Wnt-7b in the progression of glioma. To address this problem, we measured the expression of OIP5-AS1 and miR-410 in glioma tissues by qRT-PCR. Glioma U87 cells were transfected with OIP5-AS1 siRNA or miR-410 inhibitors. The targeting relationships among miR-410, OIP5-AS1 and Wnt-7b were verified by luciferase reporter assays. Western blotting was employed to determine the expression of Wnt-7b/β-catenin pathway-related proteins, while MTT, flow cytometry, Transwell assays and wound-healing assays were used to measure the biological characteristics of glioma cells. The results showed that OIP5-AS1 expression was higher and miR-410 was lower in glioma tissues. Luciferase reporter assays confirmed a targeting relationship between OIP5-AS1 and miR-410, as well as between miR-410 and Wnt-7b. Silencing OIP5-AS1 reduced cell proliferation, invasion and migration of glioma U87 cells and led to depressed expression levels of miR-410, Wnt-7b, p-β-catenin, GSK-3β-pS9, c-Myc and cyclin D1. Furthermore, down-regulation of OIP5-AS1 induced G0/G1 phase cell cycle arrest and apoptosis of glioma cells. Inhibitors of miR-410 abolished the biological effects of OIP5-AS1 siRNA in glioma cells. In vivo, OIP5-AS1 knockdown also inhibited tumor growth. Taken together, this research suggested that silencing OIP5-AS1 may specifically block the Wnt-7b/β-catenin pathway via targeted up-regulating miR-410, thereby inhibiting growth, invasion and migration while promoting apoptosis in glioma cells.
Subject
Cell Biology,Molecular Biology,Biochemistry,Biophysics
Cited by
54 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献