Imsnc761 and DDX6 synergistically suppress cell proliferation and promote apoptosis via p53 in testicular embryonal carcinoma cells

Author:

Duan Zhengzheng1,Ping Ping2,Wang Guishuan3,Zhang Xiansheng4,Sun Fei15

Affiliation:

1. Department of Cell and Developmental Biology, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027, China

2. Center for Reproductive Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200135,China

3. Medical School, Institute of Reproductive Medicine, Nantong University, Nantong, Jiangsu 226001, China

4. Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230032, China

5. Hefei National Laboratory for Physical Sciences at Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230026, China

Abstract

Intermediate-sized non-coding RNAs (imsncRNAs) have been shown to play important regulatory roles in the development of several eukaryotic organisms. In the present research, we selected imsncRNA 761 (imsnc761) as a research target. Expression analyses in a previous study showed that imsnc761 was down-regulated in maturation-arrested testis tissues as compared with the level in normal controls. In the present study, we found that imsnc761 could interact with DEAD-box helicase 6 (DDX6) to induce NTERA-2 (NT2 (testicular embryonal carcinoma cell)) cell apoptosis and proliferation inhibition via the p53 pathway. This interaction between imsnc761 and DDX6 also inhibited mitochondrial function and specific gene transcription and translation. To facilitate further research, we used label-free quantitation method to analyze the associated differences in Kyoto Encyclopaedia of Genes and Genomes (KEGG) pathways and biological processes. This confirmed the changes in several specific pathways, which matched our molecular experimental results.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry,Biophysics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3