Human mitogen-activated protein kinase kinase kinase mediates the stress-induced activation of mitogen-activated protein kinase cascades

Author:

CHAN-HUI Po-Ying1,WEAVER Robert1

Affiliation:

1. Amgen, Department of Inflammation Research, 3200 Walnut Street, Boulder, CO 80301, U.S.A.

Abstract

The mitogen-activated protein kinase (MAPK) cascades represent one of the important signalling mechanisms in response to environmental stimuli. We report the identification of a human MAPK kinase kinase, MAPKKK4, via sequence similarity with other MAPKKKs. When truncated MAPKKK4 (ΔMAPKKK4) was overexpressed in HEK293 cells, it was constitutively active and induced the activation of endogenous p38α, c-Jun N-terminal kinase (JNK)1/2 and extracellular signal-regulated kinase (ERK)2 in vivo. Kinase-inactive ΔMAPKKK4 partly inhibited the activation of p38α, JNK1/2 and ERK2 induced by stress, tumour necrosis factor α or epidermal growth factor, suggesting that MAPKKK4 might be physiologically involved in all three MAPK cascades. Co-expressed MAP kinase kinase (MKK)-1, MKK-4, MKK-3 and MKK-6 were activated in vivo by ΔMAPKKK4. All of the above MKKs purified from Escherichia coli were phosphorylated and activated by ΔMAPKKK4 immunoprecipitates in vitro. When expressed by lower plasmid doses, ΔMAPKKK4 preferentially activated MKK-3 and p38α in vivo. Overexpression of ΔMAPKKK4 did not activate the NF-κB pathway. Immunoprecipitation of endogenous MAPKKK4 by specific antibodies showed that MAPKKK4 was activated after the treatment of K562 cells with various stress conditions. As a broadly distributed kinase, MAPKKK4 might serve as a stress responder. MAPKKK4 is 91% identical with the recently described murine MEKK-4β and might be its human homologue. It is also identical with the recently cloned human MAP three kinase 1 except for the lack of an internal sequence homologous to the murine MEKK-4α isoform. Differences in the reported functional activities of the three kinases are discussed.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3