Genetic defect in N-acetylglucosaminyltransferase I gene of a ricin-resistant baby hamster kidney mutant

Author:

OPAT Andrew S.1,PUTHALAKATH Hamsa1,BURKE Jo1,GLEESON Paul A.1

Affiliation:

1. Department of Pathology and Immunology, Monash University Medical School, Commercial Road, Prahran, Victoria 3181, Australia

Abstract

The analysis of mutations associated with glycosylation-defective cell lines has the potential for identifying critical residues associated with the activities of enzymes involved in the biosynthesis of glycoconjugates. A ricin-resistant (RicR) baby hamster kidney (BHK) cell mutant, clone RicR14, has a deficiency in N-acetylglucosaminyltransferase I (GlcNAc-TI) activity and as a consequence is unable to synthesize complex and hybrid N-glycans. Here we show that RicR14 cells transfected with wild-type GlcNAc-TI regained the ability to synthesize complex N-glycans, demonstrating that the glycosylation defect of RicR14 cells is due solely to the lack of GlcNAc-TI activity. With the use of specific antibodies to GlcNAc-TI, RicR14 cells were shown to synthesize an inactive GlcNAc-TI protein that is correctly localized to the Golgi apparatus. We have cloned and sequenced the open reading frame of GlcNAc-TI from parental BHK and RicR14 cells. A comparison of several RicR14 cDNA clones with the parental BHK GlcNAc-TI sequence indicated the presence of two different RicR14 cDNA species. One contained a premature stop codon at position +81, whereas the second contained a point mutation in the catalytic domain of GlcNAc-TI resulting in the amino acid substitution Gly320 → Asp. The introduction of a Gly320 → Asp mutation into wild-type rabbit GlcNAc-TI resulted in a complete loss of activity; the GlcNAc-TI mutant was correctly localized to the Golgi, indicating that the inactive GlcNAc-TI protein was transport-competent. Gly320 is conserved in GlcNAc-TI from all species so far examined. Overall these results demonstrate that Gly320 is a critical residue for GlcNAc-TI activity. The nucleotide sequence data reported will appear in DDBJ, EMBL and GenBank Nucleotide Sequence Databases under the accession numbers AF087456 and AF087457.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3