Synthesis of ribonucleic acid by isolated rat liver mitochondria

Author:

Fukamachi S.1,Bartoov B.1,Freeman K. B.1

Affiliation:

1. Department of Biochemistry, McMaster University, Hamilton, Ont., Canada

Abstract

Rat liver mitochondria isolated in sucrose–N-tris(hydroxymethyl)methyl-2-aminoethane-sulphonic acid (TES) incorporated [3H]UTP into RNA for 1h. Incorporation was inhibited 50% by 1μg of actinomycin D/ml, 1μg of acriflavine/ml and 0.5μg of ethidium bromide/ml but was insensitive to rifampicin, rifamycin SV, streptovarcin and deoxyribonuclease. After the first 10min of incubation, the synthesis was insensitive to ribonuclease. RNA synthesis by mitochondria isolated in sucrose–EDTA was insensitive to actinomycin D and sensitive to ribonuclease during the first 10min of the incubation but thereafter the sensitivities were the same as for mitochondria isolated in sucrose–TES. In a hypo-osmotic medium the relative extent of incorporation of the four ribonucleoside triphosphates into RNA was CTP>UTP=ATP»GTP. In an iso-osmotic medium the incorporation of CTP and GTP decreased. All four nucleotides were incorporated into RNA in a DNA-dependent process, as indicated by the inhibition by actinomycin D. In addition, CTP and ATP were incorporated into the CCA end of mitochondrial tRNA. ATP was also incorporated into an unidentified acid-insoluble compound, which hydrolysed in alkali to a product that was not ATP, ADP or 5′- or 2(3′)-AMP. Atractyloside inhibited the incorporation of ATP into RNA with 50% inhibition at 2–3nmol/mg of protein. The [3H]UTP-labelled RNA had peaks of 16S and 13S characteristic of mitochondrial rRNA. In addition a peak at 20–21S was observed as well as heterogeneous RNA sedimenting throughout the gradient. The synthesis of all these species was inhibited by actinomycin D, indicating that rat liver mitochondrial DNA codes for mitochondrial rRNA as well as other as yet unidentified species.

Publisher

Portland Press Ltd.

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3