Nitrosative stress in Escherichia coli: reduction of nitric oxide

Author:

Vine Claire E.1,Cole Jeffrey A.1

Affiliation:

1. School of Biosciences, University of Birmingham, Edgbaston B15 2TT, U.K.

Abstract

The ability of enteric bacteria to protect themselves against reactive nitrogen species generated by their own metabolism, or as part of the innate immune response, is critical to their survival. One important defence mechanism is their ability to reduce NO (nitric oxide) to harmless products. The highest rates of NO reduction by Escherichia coli K-12 were detected after anaerobic growth in the presence of nitrate. Four proteins have been implicated as catalysts of NO reduction: the cytoplasmic sirohaem-containing nitrite reductase, NirB; the periplasmic cytochrome c nitrite reductase, NrfA; the flavorubredoxin NorV and its associated oxidoreductase, NorW; and the flavohaemoglobin, Hmp. Single mutants defective in any one of these proteins and even the mutant defective in all four proteins reduced NO at the same rate as the parent. Clearly, therefore, there are mechanisms of NO reduction by enteric bacteria that remain to be characterized. Far from being minor pathways, the currently unknown pathways are adequate to sustain almost optimal rates of NO reduction, and hence potentially provide significant protection against nitrosative stress.

Publisher

Portland Press Ltd.

Subject

Biochemistry

Cited by 36 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3