Cloning and analysis of human gastric mucin cDNA reveals two types of conserved cysteine-rich domains

Author:

Klomp L W J1,Van Rens L1,Strous G J1

Affiliation:

1. Laboratory of Cell Biology, AZU H02.314, University of Utrecht, Heidelberglaan 100, AZU rm H02.314, 3584 CX Utrecht, The Netherlands

Abstract

Human gastric mucin was isolated by successive CsCl-gradient ultracentrifugation in the presence of guanidinium hydrochloride to prevent degradation of the polypeptide moieties of the molecules. The amino acid sequence of a tryptic fragment of this molecule was identical to that of a tryptic fragment of tracheobronchial mucin. An oligonucleotide based on this sequence hybridized specifically to human stomach mRNA and was subsequently used to screen a human stomach lambda ZAPII cDNA library. The largest of 10 positive clones encoded 850 amino acid residues, including the tryptic fragment, with high amounts of threonine, serine and proline residues. Interestingly, cysteine accounted for almost 8% of the amino acid residues. The 3′ part of the sequence was very similar but not identical to the 3′ region of human tracheobronchial cDNA. No tandem repeated sequences were present and the deduced polypeptide sequence contained two potential N-linked glycosylation sites. Four cysteine-rich clusters were detected, one of which was apparently homologous to the D-domains present in other mucins and in von Willebrand factor. The arrangement of the cysteines in three other cysteine-rich clusters was conserved in the human gastric mucin cDNA in a similar fashion as in two domains in the MUC2 gene product. The cysteine-rich domains were separated by short stretches of non-repetitive amino acid residues with a very high content of threonine and serine residues. These data suggest that the encoded polypeptide of this clone may be involved in disulphide-bond-mediated oligomerization of the mucin, and provide new insights into the molecular organization of mammalian apomucins.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

Cited by 51 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3