Evidence for carbohydrate-independent endocytosis of tissue-type plasminogen activator by liver cells

Author:

Stang E1,Roos N1,Schlüter M2,Berg T3,Krause J2

Affiliation:

1. Electronmicroscopical Unit for Biological Sciences, Biological Institute, University of Oslo, P.O.B. 1062, Blindern, 0316 Oslo, Norway

2. Departments of Biochemical Research and Biotechnology, Dr. Karl Thomae GmbH, P.O.B. 1755, 7950 Biberach/Riss Germany

3. Department of Molecular Cell Biology, Biological Institute, University of Oslo, Norway

Abstract

In the liver, tissue-type plasminogen activator (t-PA) is endocytosed by hepatic parenchymal (PC), endothelial (EC) and Kupffer (KC) cells. Although the endocytosis is receptor-mediated, it remains a matter of discussion which receptors are involved in this catabolic process. To evaluate the role of a protein-specific receptor, as well as the possible involvement of the galactose receptor on PC and the mannose receptor on EC, we have employed different glycosylation variants of t-PA in biochemical and immunocytochemical studies. Partial or total removal of carbohydrate side-chains by endoglycosidases did not prevent clearance and hepatic endocytosis of t-PA by either of the liver cell types. Blockade of the galactose and mannose receptors by co-application of a large excess of the glycoprotein ovalbumin remained without effect on the binding and uptake of t-PA by hepatic cells. However, the contribution of different liver cell types to the hepatic clearance of t-PA was to a certain extent dependent on the type of oligosaccharide chains removed. The mannose receptor on EC is partially responsible for the clearance of t-PA by this cell type, whereas the galactose receptor does not seem to be involved in this process. The results obtained in this study further demonstrate that the major portion of the hepatic catabolism of t-PA is independent of its carbohydrate side-chains.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3