Regulation of the cell-cycle-dependent internal ribosome entry site of the PITSLRE protein kinase: roles of Unr (upstream of N-ras) protein and phosphorylated translation initiation factor eIF-2α

Author:

TINTON Sandrine A.1,SCHEPENS Bert1,BRUYNOOGHE Yanik1,BEYAERT Rudi1,CORNELIS Sigrid1

Affiliation:

1. Unit of Molecular Signal Transduction in Inflammation, Department for Molecular Biomedical Research, VIB (Flanders Interuniversity Institute for Biotechnology)–Ghent University, Technologiepark 927, B-9052 Gent-Zwijnaarde, Belgium

Abstract

The PITSLRE kinases belong to the large family of cyclin-dependent protein kinases. Their function has been related to cell-cycle regulation, splicing and apoptosis. We have previously shown that the open reading frame of the p110PITSLRE transcript contains an IRES (internal ribosome entry site) that allows the expression of a smaller p58PITSLRE isoform during the G2/M stage of the cell cycle. In the present study we investigated further the role of cis- and trans-acting factors in the regulation of the PITSLRE IRES. Progressive deletion analysis showed that both a purine-rich sequence and a Unr (upstream of N-ras) consensus binding site are essential for PITSLRE IRES activity. In line with these observations, we demonstrate that the PITSLRE IRES interacts with the Unr protein, which is more prominently expressed at the G2/M stage of the cell cycle. We also show that phosphorylation of the α-subunit of the canonical initiation factor eIF-2 is increased at G2/M. Interestingly, phosphorylation of eIF-2α has a permissive effect on the efficiency of both the PITSLRE IRES and the ornithine decarboxylase IRES, two cell cycle-dependent IRESs, in mediating internal initiation of translation, whereas this was not observed with the viral EMCV (encephalomyocarditis virus) and HRV (human rhinovirus) IRESs.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3