Molecular recognition of physiological substrate noradrenaline by the adrenaline-synthesizing enzyme PNMT and factors influencing its methyltransferase activity

Author:

Drinkwater Nyssa1,Gee Christine L.1,Puri Munish1,Criscione Kevin R.2,McLeish Michael J.3,Grunewald Gary L.2,Martin Jennifer L.1

Affiliation:

1. Institute for Molecular Bioscience, Division of Chemistry and Structural Biology, The University of Queensland, Brisbane, Queensland 4072, Australia

2. Department of Medicinal Chemistry, The University of Kansas, Lawrence, KS 66045-7582, U.S.A.

3. Department of Chemistry and Chemical Biology, Indiana University-Purdue University Indianapolis, Indianapolis, IN 46202, U.S.A.

Abstract

Substrate specificity is critically important for enzyme catalysis. In the adrenaline-synthesizing enzyme PNMT (phenylethanolamine N-methyltransferase), minor changes in substituents can convert substrates into inhibitors. Here we report the crystal structures of six human PNMT complexes, including the first structure of the enzyme in complex with its physiological ligand R-noradrenaline. Determining this structure required rapid soak methods because of the tendency for noradrenaline to oxidize. Comparison of the PNMT–noradrenaline complex with the previously determined PNMT–p-octopamine complex demonstrates that these two substrates form almost equivalent interactions with the enzyme and show that p-octopamine is a valid model substrate for PNMT. The crystal structures illustrate the adaptability of the PNMT substrate binding site in accepting multi-fused ring systems, such as substituted norbornene, as well as noradrenochrome, the oxidation product of noradrenaline. These results explain why only a subset of ligands recognized by PNMT are methylated by the enzyme; bulky substituents dictate the binding orientation of the ligand and can thereby place the acceptor amine too far from the donor methyl group for methylation to occur. We also show how the critical Glu185 catalytic residue can be replaced by aspartic acid with a loss of only 10-fold in catalytic efficiency. This is because protein backbone movements place the Asp185 carboxylate almost coincident with the carboxylate of Glu185. Conversely, replacement of Glu185 by glutamine reduces catalytic efficiency almost 300-fold, not only because of the loss of charge, but also because the variant residue does not adopt the same conformation as Glu185.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3