Affiliation:
1. School of Postgraduate Medicine and Biological Sciences, University of Keele, Stoke-on-Trent, U.K.
Abstract
1. The effect of oestradiol alone and in combination with indomethacin on blood pressure, erythrocyte cation concentration and Na+−K+ flux has been studied in adult female normotensive and spontaneously hypertensive rats.
2. Oestradiol alone resulted in a significant decrease in blood pressure in spontaneously hypertensive rats (from 165.3 ± 3.9 to 146.4 ± 2.7 mmHg, P < 0.001), whereas it induced a significant increase in normotensive rats (from 111.8 ± 1.8 to 124.1 ± 3.6 mmHg, P < 0.001). When indomethacin and oestradiol were administered simultaneously or when indomethacin was given alone, no change in blood pressure occurred in spontaneously hypertensive rats (158.6 ± 6.9 and 159.8 ± 6.2 mmHg, respectively).
3. The fall in blood pressure induced by oestradiol in spontaneously hypertensive rats was associated with significant reductions in erythrocyte K+ concentration (from 127.4 ± 1.2 to 116.9 ± 1.7 mmol/l of cells, P < 0.001), in erythrocyte Na+ concentration (from 14.3 ± 0.8 to 13.0 ± 0.6 mmol/l of cells, P < 0.02), in ouabain-sensitive erythrocyte Na+ flux (from 17.8 ± 0.3 to 16.0 ± 0.4 mmol h−1 (1 of cells)−1, P < 0.01) and in ouabain-sensitive erythrocyte K+ flux (from 11.4 ± 0.2 to 10.4 ± 0.2 mmol h−1 (1 of cells)−1, P < 0.01). No change in blood pressure, erythrocyte cation concentration or Na+−K+ flux occurred when oestradiol and indomethacin were given together or when indomethacin was administered alone.
4. The hypertensive influence of oestradiol in normotensive rats was unaccompanied by any changes in erythrocyte K+ concentration, erythrocyte Na+ concentration and total, ouabain-sensitive and ouabain-resistant Na+−K+ flux.
5. The divergent changes in blood pressure noted in the two strains occurred despite comparable changes in plasma renin activity after oestradiol, with significant increases in plasma renin activity in normotensive rats (from 16.4 ± 4.2 to 28.4 ± 6.6 ng of angiotensin I h−1 ml−1, P < 0.05) and in spontaneously hypertensive rats (from 28.3 ± 2.7 to 39.5 ± 5.7 ng of angiotensin I h−1 ml−1, P < 0.01). The plasma renin activity in spontaneously hypertensive rats receiving oestradiol or indomethacin and oestradiol were similar with values of 39.5 ± 5.7 and 40.6 ± 5.7 ng of angiotensin I h−1 ml−1, respectively, but were significantly higher than that seen in control animals (28.3 ± 2.7 ng of angiotensin I h−1 ml−1, P < 0.01). Similarly, indomethacin alone induced a significant increase in plasma renin activity in spontaneously hypertensive rats to 35.8 ± 7.6 ng of angiotensin I h−1 ml−1 (P < 0.05).
6. The contrasting effects of oestradiol on blood pressure in the two rat strains occurred without any change in packed cell volume. Likewise, the changes in blood pressure in spontaneously hypertensive rats with either oestradiol alone or in combination with indomethacin occurred without any change in packed cell volume, although indomethacin alone resulted in a significant reduction in packed cell volume (from 30.9 ± 1.6 to 26.8 ± 2.0, P < 0.01).
7. The results suggest that the hypotensive action of oestradiol in spontaneously hypertensive rats might be mediated through its influence on erythrocyte cation concentration and/or the modulation of Na+−K+ flux either directly or via the action of prostanoids.