The labelling of polyphosphoinositides with [32P]Pi and the accumulation of inositol phosphates in vasopressin-stimulated hepatocytes

Author:

Palmer S,Hawkins P T,Michell R H,Kirk C J

Abstract

When hepatocytes were incubated with [32P]Pi, the kinetics for the labelling of the monoester phosphate groups of phosphatidylinositol 4-phosphate and phosphatidylinositol 4,5-bisphosphate were similar to each other and slightly slower than that for the labelling of the gamma-phosphate of ATP. Analysis of the water-soluble 3H-labelled materials derived from [3H]inositol-labelled hepatocytes revealed that, in addition to inositol and its mono-, bis- and tris-phosphates (Ins, InsP, InsP2 and InsP3), these cells contained two unidentified radioactive compounds which co-eluted with InsP on anion-exchange chromatography. When [3H]inositol-labelled hepatocytes were stimulated with 0.23 microM-vasopressin in the presence of 10 mM-Li+, there was an accumulation of radioactivity in InsP, InsP2 and InsP3 but not in Ins or the two unidentified compounds. Further analysis of these inositol phosphates by h.p.l.c. revealed that vasopressin also stimulates the accumulation of inositol tetrakisphosphate (InsP4) in these cells. Vasopressin-stimulated InsP and InsP2 accumulations were maximal in the presence of 1-10 mM-Li+ but InsP3 accumulation continued to increase up to 50 mM-Li+. Accumulated inositol phosphates were retained within the cell. Li+ from 1 to 50 mM did not influence the extent of vasopressin-stimulated inositol lipid degradation in hepatocytes. In the absence of Li+, radioactivity in vasopressin-stimulated hepatocytes accumulated almost entirely in free inositol. The vasopressin-stimulated accumulation of inositol phosphates in the presence of 10 mM-Li+ was abolished by a V1-vasopressin antagonist. Inositol phosphate accumulation was not influenced by ionophore A23187, dimethyl sulphoxide or indomethacin.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

Cited by 75 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3