Impaired nitric oxide production in coronary endothelial cells of the spontaneously diabetic BB rat is due to tetrahydrobiopterin deficiency

Author:

MEININGER Cynthia J.1,MARINOS Rebecca S.1,HATAKEYAMA Kazuyuki2,MARTINEZ-ZAGUILAN Raul3,ROJAS Jose D.3,KELLY Katherine A.1,WU Guoyao14

Affiliation:

1. Cardiovascular Research Institute and Department of Medical Physiology, The Texas A&M University System Health Science Center, College Station, TX 77843-1114, U.S.A.

2. Department of Surgery, University of Pittsburgh, Pittsburgh, PA 15213, U.S.A.

3. Department of Physiology, Texas Tech University, Lubbock, TX 79430, U.S.A.

4. Department of Animal Science, Texas A&M University, College Station, TX 77843-2471, U.S.A.

Abstract

Endothelial cells (EC) from diabetic BioBreeding (BB) rats have an impaired ability to produce NO. This deficiency is not due to a defect in the constitutive isoform of NO synthase in EC (ecNOS) or alterations in intracellular calcium, calmodulin, NADPH or arginine levels. Instead, ecNOS cannot produce sufficient NO because of a deficiency in tetrahydrobiopterin (BH4), a cofactor necessary for enzyme activity. EC from diabetic rats exhibited only 12% of the BH4 levels found in EC from normal animals or diabetes-prone animals which did not develop disease. As a result, NO synthesis by EC of diabetic rats was only 18% of that for normal animals. Increasing BH4 levels with sepiapterin increased NO production, suggesting that BH4 deficiency is a metabolic basis for impaired endothelial NO synthesis in diabetic BB rats. This deficiency is due to decreased activity of GTP-cyclohydrolase I, the first and rate-limiting enzyme in the de novo biosynthesis of BH4. GTP-cyclohydrolase activity was low because of a decreased expression of the protein in the diabetic cells.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3