The periphery of the developing collagen fibril. Quantitative relationships with dermatan sulphate and other surface-associated species

Author:

Scott J E

Abstract

Dermatan sulphate, hydroxyproline and collagen fibril diameters were measured in flexor tendons from chick and calf limbs, from early in embryonic development to maturity. The collagen fibril is viewed as a long thin cylinder. A species X present at the periphery of the cylinder, regularly and specifically arrayed along the fibril, should then satisfy the relationship [X]/[collagen]r = k where [X] and [collagen] are tissue concentrations of X and collagen, and r is the fibril radius. Throughout the developmental period studied, dermatan sulphate (i.e.X) in chick, calf and rat tendons fits the relationship, implying that it is specifically, regularly and entirely associated with collagen fibrils, thus confirming and extended previous electron histochemistry [Scott & Orford (1981) Biochem. J. 197, 213-216]. This approach explains the pattern of change of dermatan sulphate content during development of the tendon. The findings imply that the dermatan sulphate proteoglycan-collagen interaction is evolutionarily highly conserved. The relationship [X]/[collagen]r = k is used to show that surface concentrations of covalently bound species, such as extension propeptides, can be easily assessed, given the data base described in paragraph 1 above.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

Cited by 95 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Mechanochemistry of collagen;Acta Biomaterialia;2023-06

2. Collagen‐Based Systems to Mimic the Extracellular Environment;Multifunctional Hydrogels for Biomedical Applications;2022-05-13

3. Tendon Extracellular Matrix Assembly, Maintenance and Dysregulation Throughout Life;Advances in Experimental Medicine and Biology;2021

4. Multifunctional smart hydrogels: potential in tissue engineering and cancer therapy;Journal of Materials Chemistry B;2018

5. Glycosaminoglycans in Tendon Physiology, Pathophysiology, and Therapy;Bioconjugate Chemistry;2015-05-26

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3