Pathways of colicin import: utilization of BtuB, OmpF porin and the TolC drug-export protein

Author:

Zakharov Stanislav D.12,Sharma Onkar3,Zhalnina Mariya1,Yamashita Eiki4,Cramer William A.1

Affiliation:

1. Department of Biological Sciences, Hockmeyer Hall of Structural Biology, Purdue University, West Lafayette, IN 47907, U.S.A.

2. Institute of Basic Problems of Biology, Russian Academy of Sciences, Pushchino, Moscow Region 140290, Russian Federation

3. Division of Infectious Diseases, Children's Hospital, Harvard Medical School, Boston, MA 02115, U.S.A.

4. Institute for Protein Research, Osaka University, Suita, Osaka 565-0871, Japan

Abstract

Pathway I. Group A nuclease colicins parasitize and bind tightly (Kd ≤ 10−9 M) to the vitamin B12 receptor on which they diffuse laterally in the OM (outer membrane) and use their long (≥100 Å; 1 Å=0.1 nm) receptor-binding domain as a ‘fishing pole’ to locate the OmpF porin channel for translocation. Crystal structures of OmpF imply that a disordered N-terminal segment of the colicin T-domain initiates insertion. Pathway II. Colicin N does not possess a ‘fishing pole’ receptor-binding domain. Instead, it uses OmpF as the Omp (outer membrane protein) for reception and translocation, processes in which LPS (lipopolysaccharide) may also serve. Keio collection experiments defined the LPS core that is used. Pathway III. Colicin E1 utilizes the drug-export protein TolC for import. CD spectra and thermal-melting analysis predict: (i) N-terminal translocation (T) and central receptor (BtuB) -binding (R) domains are predominantly α-helical; and (ii) helical coiled-coil conformation of the R-domain is similar to that of colicins E3 and Ia. Recombinant colicin peptides spanning the N-terminal translocation domain defined TolC-binding site(s). The N-terminal 40-residue segment lacks the ordered secondary structure. Peptide 41–190 is helical (78%), co-elutes with TolC and occluded TolC channels. Driven by a trans-negative potential, peptides 82–140 and 141–190 occluded TolC channels. The use of TolC for colicin E1 import implies that the interaction of this colicin with the other Tol proteins does not occur in the periplasmic space, but rather through Tol domains in the cytoplasmic membrane, thus explaining colicin E1 cytotoxicity towards a strain in which a 234 residue periplasmic TolA segment is deleted.

Publisher

Portland Press Ltd.

Subject

Biochemistry

Reference45 articles.

1. Border crossings: colicins and transporters;Jakes;Ann. Rev. Genet.,2012

2. Colicins;Sharma;Handb. Biol. Act. Pept.,2012

3. Energy-coupled outer membrane transport proteins and regulatory proteins;Braun;Biometals,2007

4. Thermodynamic dissection of colicin interactions;Housden;Methods Enzymol.,2011

5. Killing of E. coli cells by E group nuclease colicins;James;Biochimie,2002

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3