Identification of hepatocyte nuclear factor-3 binding sites in the Clara cell secretory protein gene

Author:

Bingle C D1,Gitlin J D1

Affiliation:

1. Edward Mallinckrodt Department of Pediatrics, Washington University School of Medicine, St. Louis, MO 63110, U.S.A.

Abstract

To determine the mechanisms of cell-specific gene expression in the developing pulmonary epithelium the Clara cell secretory protein (CCSP) gene promoter was analysed by DNAase I footprinting. A prominent site of protein-DNA interaction was detected from nucleotides -132 to -76 using nuclear extract from mouse lung and human H441 cells. Mobility shift analysis revealed that an oligonucleotide corresponding to this region interacted with multiple proteins from lung and H441 cell nuclear extracts. Analysis of the nucleotide sequence of this region identified two potential binding sites for hepatocyte nuclear factor 3 (HNF-3), and consistent with this finding binding to this CCSP oligonucleotide was specifically competed for by an oligonucleotide corresponding to the HNF-3-binding site from the mouse transthyretin gene. Mobility shift of the CCSP oligonucleotide was supershifted using antisera specific to HNF-3 alpha and HNF-3 beta, and HNF-3 alpha and HNF-3 beta translated in vitro were found to bind specifically to this same oligonucleotide. Co-transfection of HNF-3 alpha- and HNF-3 beta-expression plasmids increased cell-specific reporter gene activity in H441 cells transfected with a CCSP-CAT gene chimeric construct containing this -132 to -76 region. Taken together, these results suggest a role for HNF-3 in mediating cell-specific CCSP gene expression within the bronchiolar epithelium. These findings support the hypothesis that members of the HNF-3 ‘forkhead’ family of transcription factors determine gene expression and cell fate in multiple cell lineages derived from the primitive gut endoderm.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

Cited by 65 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3