Cloning of the gene and cDNA for hamster chymase 2, and expression of chymase 1, chymase 2 and angiotensin-converting enzyme in the terminal stage of cardiomyopathic hearts

Author:

SHIOTA Naotaka1,FUKAMIZU Akiyoshi2,OKUNISHI Hideki3,TAKAI Shinji1,MURAKAMI Kazuo2,MIYAZAKI Mizuo1

Affiliation:

1. Department of Pharmacology, Osaka Medical College, 2–7 Daigakumachi, Takatsuki, Osaka 569, Japan

2. Institute of Applied Biochemistry, University of Tsukuba, Tsukuba 305, Japan

3. Department of Pharmacology, Shimane Medical University, Izumo 693, Japan

Abstract

Chymase is responsible for the formation of angiotensin II, which plays crucial roles in the pathogenesis of cardiovascular diseases. In the present study we determined the gene organization of a novel hamster chymase (hamster chymase 2) and analysed the expression of chymase 1, chymase 2 and angiotensin-converting enzyme (ACE) in hamster hearts at the terminal stage of cardiomyopathy. The gene encoding hamster chymase 2 is 3.2 kb in length and has five exons and four intervening sequences. The overall organization of this gene is similar to that of several other serine proteases. The deduced amino acid sequence revealed the existence of a preproenzyme composed of a signal peptide with 19 amino acids, a propeptide with two amino acids and a catalytic domain with 226 amino acids. The predicted full sequence of the catalytic domain was revealed to be very similar to the sequences of mouse mast-cell protease 5 (86%), rat mast-cell protease III (85%) and human chymase (70%) and less similar to hamster chymase 1 (56%). The expression of chymase 1 in heart was higher than that of chymase 2. The cardiac chymase-like activity, as well as the mRNA levels of chymase 1 and 2 of BIO 14.6 cardiomyopathic hamsters at the age of 60 weeks were increased 3.4-, 2.8- and 5.1-fold respectively compared with age-matched BIO F1B control hamsters. The cardiac ACE activity and the ACE mRNA level of cardiomyopathic hamsters were also increased 4.1- and 2.4-fold compared with those of age-matched controls. These results suggest that up-regulation of both ACE and chymases participates in the pathophysiology of the terminal stage of cardiomyopathy. The nucleotide sequence data reported will appear in the DDBJ, EMBL and GenBank Nucleotide Sequence Databases under the accession number AB007622.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

Cited by 23 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3