Biochemical characterization of the arginine-specific proteases of Porphyromonas gingivalis W50 suggests a common precursor

Author:

RANGARAJAN Minnie1,SMITH Susan J. M.1,U Sally1,CURTIS Michael A.1

Affiliation:

1. MRC Molecular Pathogenesis Group, Department of Oral Microbiology, St. Bartholomew's and the Royal London School of Medicine and Dentistry, 32 Newark Street, London E1 2AA, U.K.

Abstract

Extracellular proteases of Porphyromonas gingivalis specific for arginyl peptide bonds are considered to be important virulence factors in periodontal disease. In order to determine the number, inter-relationship and kinetic properties of these proteases, extracellular enzymes with this peptide-bond specificity were purified and characterized from P. gingivalis W50. Three forms, which we denote RI, RI-A and RI-B, accounted for all of the activity in the supernatant. All three enzymes contain an α chain of ∼54 kDa with the same N-terminal amino acid sequence. RI is a heterodimer of non-covalently linked α and β chains which migrate to the same position on SDS/PAGE but which can be resolved by 8 M urea/PAGE. RI-A and RI-B are both monomeric, but the molecular mass of RI-B (70–80 kDa) is significantly increased due to post-translational modification with lipopolysaccharide. All forms show absolute specificity for peptide bonds with Arg in the P1 position and are also capable of hydrolysing N-terminal Arg and C-terminal Arg–Arg peptide bonds. Thus they show limited amino- and carboxy-peptidase activity. For the hydrolysis of Nα-benzoyl-l-Arg-p-nitroanilide, the pH optimum is 8.0 at 30 °C. The Vmax for all three enzymes is controlled by ionization of two residues with apparent pKas at 30 °C of 6.5±0.05 and 9.7±0.05, and ΔH values of ∼29 kJ/mol and ∼ 24 kJ/mol in the enzyme–substrate complex. By analogy with papain, the pKa of 6.5 could be ascribed to a Cys and the pKa of 9.7 to a His residue. E-64 [l-trans-epoxysuccinyl-leucylamide-4-(4-guanidino)butane] is a competitive inhibitor of RI, RI-A and RI-B. Based on physical properties and kinetic behaviour, RI-A appears to be analogous to gingipain from P. gingivalis HG66. However the α/β structure of RI differs significantly from that of the high-molecular-mass multimeric complex of gingipain containing four haemagglutinins described by others. Since the genes for RI and high-molecular-mass gingipain are identical, the data indicate that an alternative processing pathway is involved in the formation of RI from the initial precursor. Furthermore, the identical N-termini and enzymic properties of the catalytic component of RI, RI-A and RI-B suggest that the maturation pathway of the RI precursor may also give rise to RI-A and RI-B. The physiological functions of these isoforms and their role in the disease process may become more apparent through examination of their interactions with host proteins.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3