Effect of treatment in vivo of rats with bacterial endotoxin on fructose 2,6-bisphosphate metabolism and L-pyruvate kinase activity and flux in isolated liver cells

Author:

Ceppi E D1,Knowles R G2,Carpenter K M1,Titheradge M A1

Affiliation:

1. School of Biological Sciences, University of Sussex, Brighton BN1 9QG, U.K.

2. Biochemical Sciences, Wellcome Research Laboratories, Beckenham, Kent BR3 3BS, U.K.

Abstract

The effect of treatment of rats with bacterial endotoxin on fructose 2,6-bisphosphate (Fru-2,6-P2) metabolism was investigated in isolated liver cells prepared from 18 h-starved animals. The results obtained support the hypothesis that a stimulation of 6-phosphofructo-1-kinase (PFK-1) activity and an inhibition of fructose-1,6-bisphosphatase (Fru-1,6-P2ase) may be one mechanism underlying the inhibition of gluconeogenesis from lactate and pyruvate by endotoxin. We suggest that the stimulation of PFK-1 and inhibition of Fru-1,6-P2ase activity is the result of a 2-3-fold increase in Fru-2,6-P2. The latter is not due to changes in the total activity or phosphorylation state of the bifunctional 6-phosphofructo-2-kinase (PFK-2)/fructose-2,6-bisphosphatase, but appears to be the result of a decrease in the cytosolic concentration of phosphoenolpyruvate (PEP), an inhibitor of PFK-2 activity. The effect of endotoxin is resistant to the presence of glucagon, which has comparable effects in cells prepared from both control and endotoxin-treated animals. The mechanism by which endotoxin treatment of the rat decreases PEP and gluconeogenesis remains to be established. However, it does not involve alterations in either the total activity or the phosphorylation state of pyruvate kinase, nor does it involve increased flux through this enzyme in the intact cell, which is in fact decreased in this model of septic shock. It is suggested that the decreased flux may result from a lower rate of formation of PEP, suggesting that the prime lesion in sepsis is an inhibition of one or more of the steps leading to PEP formation.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

Cited by 26 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3