Tuberculosis: evolution in millennia and minutes

Author:

Gillespie S.H.1

Affiliation:

1. Centre for Medical Microbiology, Hampstead Campus, Rowland Hill Street, London NW3 2PF, U.K.

Abstract

Tuberculosis remains a global public health threat: the causative organism, Mycobacterium tuberculosis, was once thought to show little genetic variation, but research in the last 10 years has demonstrated an ability to change in a series of different time frames. Related species of mycobacteria have undergone evolution by deletion of segments of DNA, allowing Mycobacterium bovis and other species to emerge from the M. tuberculosis complex, disproving the previously accepted theories. Deletions also affect the pathogenic potential of different lineages of M. tuberculosis. Over shorter time periods genetic variation is achieved by the movement of insertion sequences such as IS6110. Some lineages identified by this means are over-represented in patient populations, suggesting a genetic advantage, although the mechanism for this is not yet apparent. M. tuberculosis must also adapt to host and antibiotic selection pressure, and this is achieved by point mutations. Almost all antibiotic resistance emerges in this way, and data from clinical and in vitro studies indicate that M. tuberculosis exists with pre-existent mutants that remain as a small proportion of the population because of fitness deficits. Under certain physiological conditions, these rarer mutants may be favoured and, when antibiotic selection pressure is applied, will rise to dominate the bacterial population. M. tuberculosis is a highly effective pathogen that has caused disease in human populations for millennia. We are now starting to understand some of the genetic mechanisms behind this phenomenon.

Publisher

Portland Press Ltd.

Subject

Biochemistry

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Mechanisms of Mycobacterium tuberculosis Drug Resistance;Molecular Genetics, Microbiology and Virology;2024-03

2. Mycobacterium tuberculosis drugs resistance mechanisms;Molecular Genetics Microbiology and Virology (Russian version);2024

3. The evolving biology of Mycobacterium tuberculosis drug resistance;Frontiers in Cellular and Infection Microbiology;2022-10-05

4. Infections and cancer: the “fifty shades of immunity” hypothesis;BMC Cancer;2017-04-12

5. Drug Resistance of Antitubercular Agents at the Genetic Level in Mycobacterium Species: A Road Map to Drug Development for Counteracting the Resistance;Mini-Reviews in Organic Chemistry;2016-07-20

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3