Exercise- and nutrient-controlled mechanisms involved in maintenance of the musculoskeletal mass

Author:

Rennie M.J.1

Affiliation:

1. School of Biomedical Sciences, University of Nottingham, Graduate Entry Medical School, Derby City General Hospital, Uttoxeter Road, Derby DE22 3DT, U.K.

Abstract

The mechanisms of maintenance of the protein mass of muscle and associated connective tissue and bone are becoming more accessible as a result of the use of a combination of well-established techniques for measurement of protein turnover and measurement of protein expression and phosphorylation state of signalling molecules involved in anabolic and catabolic responses. Amino acids, hormones and physical activity appear to be the major short-term physiological regulators of muscle mass, mainly through their actions on protein synthesis and breakdown, on a time scale of minutes to hours, with duration of changes in gene expression up to weeks. Amino acids are the main components in the diet regulating protein turnover, having marked effects in stimulating muscle protein synthesis and with almost no effect on muscle protein breakdown. Branched-chain amino acids, and in particular leucine, simulate protein synthesis via signalling pathways involving mTOR (mammalian target of rapamycin) in a dose–response manner. Insulin has little effect on protein synthesis in human muscle, but it has a marked inhibitory effect on protein breakdown. The amino acid simulation of anabolism is not dependent on the presence of insulin, IGF-1 (insulin-like growth factor-1) or growth hormone. Exercise not only stimulates protein synthesis in muscle, but also in tendon; and disuse atrophy is accompanied by marked decreases of both muscle and tendon collagen protein synthesis. Bone collagen synthesis appears to be nutritionally regulated by the availability of amino acids, but not lipid or glucose.

Publisher

Portland Press Ltd.

Subject

Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3