Modulation of mitochondrial electrical potential: a candidate mechanism for drug resistance in African trypanosomes

Author:

WILKES Jonathan M.1,MULUGETA Wubet1,WELLS Clive1,PEREGRINE Andrew S.1

Affiliation:

1. International Livestock Research Institute, P.O. Box 30709, Nairobi, Kenya

Abstract

Bloodstream forms of four populations of the livestock pathogen Trypanosoma congolense, isolated from different natural infections, have been shown to exhibit a wide range of sensitivities to the trypanocide isometamidium chloride (Samorin®). In mice the 50% curative doses (CD50) for Samorin range from 0.007 to 20 mg/kg body weight. Uptake of isometamidium chloride demonstrated Michaelis–Menten-type kinetics in all the populations, with Km values in the range 0.35–0.87 μM, and Vmax varied from 17 to 216 pmol/min per 108 cells. The magnitude of Vmax was correlated with sensitivity to the drug. In contrast, no correlation was observed between Km values and drug sensitivity. Pulse–chase experiments indicated two compartments for accumulation of drug. The first consists of freely diffusible drug that is invariant between populations; the other consists of retained isometamidium, which is of variable magnitude between the populations and is correlated with drug sensitivity. Autoradiography and fluorescence microscopy demonstrated initial, rapid accumulation of the drug within the mitochondrion, specifically the kinetoplast. In a drug-sensitive population of T. congolense, agents affecting mitochondrial function were shown to produce dose-dependent inhibition of mitochondrial membrane potential (ΔΨmito), as measured by the accumulation of the lipophilic cations [3H]methyltriphenylphosphonium iodide or rhodamine 123. The agents also produced parallel inhibition of isometamidium uptake, suggesting an involvement of ΔΨmito in the accumulation of the drug. When characterized in each of the four populations, the spontaneous ΔΨmito was shown to be characteristic of each population and was correlated with Vmax for drug uptake and sensitivity to the drug in vitro and in vivo. We therefore conclude that in T. congolenseΔΨmito is an important determinant of the rate and accumulation of the trypanocide isometamidium chloride. Populations of this trypanosome species vary with respect to ΔΨmito, which is correlated with sensitivity to isometamidium. We suggest that when exposed to drug, the selection of such populations represents a novel mechanism of drug resistance in protozoan parasites.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3