The effects of cycloheximide on the biosynthesis and secretion of proteoglycans by chondrocytes in culture

Author:

Mitchell D,Hardingham T

Abstract

Proteoglycans synthesized by rat chondrosarcoma cells in culture are secreted into the culture medium through a pericellular matrix. The appearance of [35S]sulphate in secreted proteoglycan after a 5 min pulse was rapid (half-time, t 1/2 less than 10 min), but that of [3H]serine into proteoglycan measured after a 15 min pulse was much slower (t 1/2 120 min). The incorporation of [3H]serine into secreted protein was immediately inhibited by 1 mM-cycloheximide, but the incorporation of [35S]sulphate into proteoglycans was only inhibited gradually(t 1/2 79 min), suggesting the presence of a large intracellular pool of proteoglycan that did not carry sulphated glycosaminoglycans. Cultures were pulsed with [3H]serine and [35S]sulphate and chased for up to 6 h in the presence of 1 mM-cycloheximide. Analysis showed that cycloheximide-chased cells secreted less than 50% of the [3H]serine in proteoglycan of control cultures and the rate of incorporation into secreted proteoglycan was decreased (from t 1/2 120 min to t 1/2 80 min). Under these conditions cycloheximide interfered with the flow of proteoglycan protein core along the route of intracellular synthesis leading to secretion, as well as inhibiting further protein core synthesis. The results suggested that the newly synthesized protein core of proteoglycan passes through an intracellular pool for about 70-90 min before the chondroitin sulphate chains are synthesized on it, and it is then rapidly secreted from the cell. Proteoglycan produced by cultures incubated in the presence of cycloheximide and labelled with [35S]sulphate showed an increase with time of both the average proteoglycan size and the length of the constituent chondroitin sulphate chain. However, the proportion of synthesized proteoglycans able to form stable aggregates did not alter.

Publisher

Portland Press Ltd.

Cited by 72 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3