Iron chelation-induced senescence-like growth arrest in hepatocyte cell lines: association of transforming growth factor β1 (TGF-β1)-mediated p27Kip1 expression

Author:

YOON Gyesoon1,KIM Hyun-Jung1,YOON Young-Sil1,CHO Hyeseong1,LIM In K.1,LEE Jae-Ho1

Affiliation:

1. Department of Biochemistry and Molecular Biology, Ajou University School of Medicine, Wonchon-Dong, Paldal-Gu, Suwon 442-749, South Korea

Abstract

Iron is essential for cellular proliferation in all organisms. When deprived of iron, the growth of cells is invariably inhibited. However, the mechanism involved remains largely unclear. In the present study, we have observed that subcytotoxic concentrations of desferroxamine mesylate (DFO), an iron chelator, specifically inhibited the transition from G1 to S-phase of Chang cells, a hepatocyte cell line. This was accompanied by the appearance of senescent biomarkers, such as enlarged and flattened cell morphology, senescence-associated β-galactosidase activity and reduced expression of poly(ADP-ribose) polymerase. Concomitantly, p27Kip1 (where Kip is kinase-inhibitory protein) was induced markedly, whereas other negative cell-cycle regulators, such as p21Cip1 (where Cip is cyclin-dependent kinase-interacting protein), p15INK4B and p16INK4A (where INK is inhibitors of cyclin-dependent kinase 4), were not, implying its association in the G1 arrest. Furthermore, the induction of p27Kip1 was accompanied by an increased level of transforming growth factor β1 (TGF-β1) mRNA. When neutralized with an anti-(TGF-β1) antibody, p27Kip1 induction was completely abolished, indicating that TGF-β1 is the major inducer of p27Kip1. Finally, DFO-induced senescence-like arrest was found to be independent of p53, since cell-cycle arrest was still observed with two p53-negative cell lines, Huh7 and Hep3B cells. In conclusion, DFO induced senescence-like G1 arrest in hepatocyte cell lines and this was associated with the induction of p27Kip1 through TGF-β1, but was independent of p53.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

Cited by 67 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3