Characterization of the leupeptin-inactivating enzyme from Streptomyces exfoliatus SMF13 which produces leupeptin

Author:

KIM In Seop1,KIM Young Bae1,LEE Kye Joon1

Affiliation:

1. Department of Microbiology, College of Natural Science and Research Centre for Molecular Microbiology, Seoul National University, Seoul 151-742, Korea

Abstract

Leupeptin-inactivating enzyme (LIE) was purified from Streptomyces exfoliatusSMF13 by ammoniumm sulphate fractionation of cell-free culture broth, ultrafiltration, anion-exchange chromatography on DEAE–Sephadex A-50 and gel filtration chromatography on Sephadex G-75. The molecular mass of the purified enzyme was measured as 34700 Da and the N-terminal amino acid sequence was APTPPDIPLANVPA. Acetyl-leucine, leucine and argininal were identified as the products of leupeptin inactivated by the LIE, indicating that leupeptin is inactivated by hydrolysis of peptide bond between leucine and leucine and between leucine and argininal of leupeptin (acetyl-leucine-leucine-argininal). Synthetic-peptide substrates specificity of LIE showed that LIE has absolute specificity for peptide bonds with leucine in the P1 position, suggesting that LIE is a leucine-specific protease. The optimum pH and temperature were pH 9.0 and 45 °C, respectively. LIE activity was inhibited by metalloprotease inhibitors such as EDTA, EGTA, o-phenanthroline and bestatin, but activated by Mg2+ and Ca2+, suggesting that the enzyme is a metalloprotease. Aerial-mycelium growth and aerial spore formation of S. exfoliatus SMF13 were inhibited by the addition of bestatin, an inhibitor of LIE. The inhibition of morphological differentiation was due to the inhibition of trypsin-like protease (TLP) activity, which is essential for aerial-mycelium formation and is inhibited specifically by remaining leupeptin that was not inactivated. These results show that LIEs play a role in controlling the amount of leupeptin during colony development. Therefore, it is suggested that the physiological function of LIE is to inactivate leupeptin when or where TLP activity is required for aerial-mycelium formation.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3