Epigenetic regulation of TGF-β1 signalling in dilative aortopathy of the thoracic ascending aorta

Author:

Forte Amalia1,Galderisi Umberto1,Cipollaro Marilena1,De Feo Marisa2,Corte Alessandro Della2

Affiliation:

1. Experimental Medicine, Second University of Naples, Naples, Italy

2. Cardiothoracic Sciences, Second University of Naples, Naples, Italy

Abstract

The term ‘epigenetics’ refers to heritable, reversible DNA or histone modifications that affect gene expression without modifying the DNA sequence. Epigenetic modulation of gene expression also includes the RNA interference mechanism. Epigenetic regulation of gene expression is fundamental during development and throughout life, also playing a central role in disease progression. The transforming growth factor β1 (TGF-β1) and its downstream effectors are key players in tissue repair and fibrosis, extracellular matrix remodelling, inflammation, cell proliferation and migration. TGF-β1 can also induce cell switch in epithelial-to-mesenchymal transition, leading to myofibroblast transdifferentiation. Cellular pathways triggered by TGF-β1 in thoracic ascending aorta dilatation have relevant roles to play in remodelling of the vascular wall by virtue of their association with monogenic syndromes that implicate an aortic aneurysm, including Loeys–Dietz and Marfan's syndromes. Several studies and reviews have focused on the progression of aneurysms in the abdominal aorta, but research efforts are now increasingly being focused on pathogenic mechanisms of thoracic ascending aorta dilatation. The present review summarizes the most recent findings concerning the epigenetic regulation of effectors of TGF-β1 pathways, triggered by sporadic dilative aortopathy of the thoracic ascending aorta in the presence of a tricuspid or bicuspid aortic valve, a congenital malformation occurring in 0.5–2% of the general population. A more in-depth comprehension of the epigenetic alterations associated with TGF-β1 canonical and non-canonical pathways in dilatation of the ascending aorta could be helpful to clarify its pathogenesis, identify early potential biomarkers of disease, and, possibly, develop preventive and therapeutic strategies.

Publisher

Portland Press Ltd.

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3