The gene for a novel protein, a member of the protein disulphide isomerase/form I phosphoinositide-specific phospholipase C family, is amplified in hydroxyurea-resistant cells

Author:

Chaudhuri M M1,Tonin P N2,Lewis W H2,Srinivasan P R1

Affiliation:

1. Department of Biochemistry and Molecular Biophysics, College of Physicians and Surgeons, Columbia University, New York, NY 10032, U.S.A.

2. Department of Microbiology, Fitzgerald Building, University of Toronto, Toronto, Canada M5S 1A8

Abstract

Cell lines selected in multiple steps for increasing resistance to hydroxyurea have been shown to have corresponding increases in ribonucleotide reductase activity. We have isolated a number of cDNA clones from a cDNA library constructed from a highly hydroxyurea-resistant hamster cell line, 600H, in which the activity of ribonucleotide reductase is elevated more than 80-fold. These clones correspond to genomic DNA sequences amplified in the 600H cell line compared with the V79 parental line. One of these cDNA clones, termed P5, codes for a 50 kDa protein detected by in vitro translation of poly(A)+ RNA isolated by hybridization/selection. The cDNA sequence contains a single open reading frame of 1317 nucleotides which encodes a polypeptide of 439 amino acids. The amino acid sequence deduced from the cDNA insert contains two copies of the 11-amino-acid sequence Val-Glu-Phe-Tyr-Ala-Pro-Trp-Cys-Gly-His-Cys. Duplicate copies of this sequence also occur in the active site of rat and human protein disulphide isomerase (also known as the beta-subunit of human prolyl 4-hydroxylase, tri-iodothyronine-binding protein) and in Form I phosphoinositide-specific phospholipase C, indicating that P5 falls into this newly defined superfamily of proteins. Genomic sequences similar to the cDNA clone are amplified 10-20-fold in hamster cells selected for resistance to increasing concentrations of hydroxyurea, a phenomenon observed earlier with cDNA clones for the M2 subunit of ribonucleotide reductase and ornithine decarboxylase. RNA blots probed with P5 cDNA show two poly(A)+ RNA species which are elevated in hydroxyurea-resistant cells.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3