Affiliation:
1. Department of Chemistry and Molecular Sciences, University of Warwick, Coventry CV4 7AL, U.K.
2. Department of Biology, Guy's Hospital Medical School, London SE1 9RT, U.K.
Abstract
The effects of thiol-specific reagents on the amplitude of the electro-olfactogram (E.O.G.) responses elicited from frog olfactory mucosa by pulses of odorant vapours was studied. The impermeant thiol-specific reagent mersalyl [(3-{[2-(carboxymethoxy)-benzoyl]amino}-2-methoxypropyl)hydroxymercury monosodium salt] brings about a rapid decrease in the E.O.G. signal obtained with the odorant pentyl acetate. The extent of the decrease is proportional to the concentration of the mersalyl applied and the effect of the reagent is partially but incompletely reversed by treatment of the labelled mucosa with dithiothreitol. The sites labelled by mersalyl can be protected by pretreating the mucosa with a dilute solution of the odorant pentyl acetate and leaving the solution in contact with the tissue after the addition of mersalyl. When the protecting odorant is washed out of the tissue, the original E.O.G. amplitude is regained. Pentyl acetate applied to the mucosa protected the E.O.G. response to vapour pulses of the following odorants from the effects of mersalyl: n-butyric acid, n-butyl acetate, phenylacetaldehyde and cineole (1,3,3-trimethyl-2-oxabicyclo[2.2.2]octane). The pentyl acetate applied to the mucosa failed to protect the E.O.G. response to vapour pulses of the following odorants from the effects of mersalyl: butan-1-ol, benzyl acetate, nitrobenzene, β-ionone and linalyl acetate. The significance of the differential protection effects for the odour-quality-coding mechanism in the olfactory primary neurons is discussed. It is suggested that the olfactory code at this level of the olfactory system may be elucidated by chemical-modification methods.
Subject
Cell Biology,Molecular Biology,Biochemistry
Cited by
22 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献