Cell respiration and formation of reactive oxygen species: facts and artefacts

Author:

Nohl H.1,Kozlov A.V.1,Gille L.1,Staniek K.1

Affiliation:

1. Department of Basic Research in Pharmacology and Toxicology, University of Veterinary Medicine Vienna, Veterinärplatz 1, A-1210 Vienna, Austria

Abstract

It is generally taken as an established fact that mitochondrial respiration is associated with the generation of small amounts of ROS (reactive oxygen species). There are many arguments supporting this side activity. A major argument is the particular physico-chemical configuration of dioxygen, which prevents the transfer of a pair of electrons. Instead, oxygen is reduced by the successive transfer of single electrons, necessarily leading to intermediates with odd electrons. The high rate of turnover of oxygen in the respiratory chain in combination with the existence of single-electron carriers supports the concept of mitochondria as the major cellular ROS generator. Experimental evidence on the ability of mitochondria to generate ROS was, however, based essentially on in vitro experiments with isolated mitochondria. A variety of structural and functional alterations associated with the removal of mitochondria from the cell, as well as the routinely applied ROS detection methods, may lead to artefactual deviation of odd electrons to dioxygen. We therefore checked these correlations in view of ROS formation, including the often reported effect of the membrane potential on the establishment of a redox couple with oxygen out of sequence. For this purpose we developed novel methods to prove the authenticity of mitochondria for ROS generation in the living cell. Based on our experiments, we can exclude spontaneous release of ROS from mitochondria. However, we describe conditions under which mitochondria can be transformed to mild ROS generators. The site of single-electron deviation to dioxygen was found to be ubiquinol interacting with the Rieske iron–sulphur protein and low-potential cytochrome b of the bc1 complex.

Publisher

Portland Press Ltd.

Subject

Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3