Diradylglycerols stimulate phospholipase A2 and subsequent exocytosis in ram spermatozoa. Evidence that the effect is not mediated via protein kinase C

Author:

Roldan E R S1,Fragio C2

Affiliation:

1. Laboratory of Cell Recognition and Signalling, AFRC Babraham Institute, Cambridge, U.K.

2. Department of Development and Signalling, AFRC Babraham Institute, Cambridge CB2 4AT, U.K.

Abstract

We tested the hypothesis that the role of diacylglycerol (DAG) in sperm acrosomal exocytosis is related to the activation of phospholipase A2, and that this effect is not mediated via protein kinase C. Treatment of [14C]arachidonic acid-labelled ram spermatozoa with Ca2+ and the ionophore A23187 stimulated both liberation of arachidonic acid and acrosomal exocytosis. No changes in [14C]DAG or [14C]monoacylglycerol were found after stimulation of spermatozoa, thus suggesting that arachidonic acid may be released exclusively via phospholipase A2. An increase in the endogenous levels of diradylglycerols (DRGs), resulting from exposure either to the DAG kinase inhibitor R 59022 or to exogenous 1-oleoyl-2-acetyl-sn-glycerol or 1,2-dioctanoyl-sn-glycerol, led to an increase in both phospholipase A2 activity and exocytosis when cells were stimulated with A23187 and Ca2+. Addition of DRGs that do not stimulate protein kinase C(1,3-dioctanoylglycerol, 1-O-hexadecyl-2-acetyl-rac-glycerol) also resulted in an increase in phospholipase A2 activity and exocytosis. On the other hand, phorbol esters (phorbol 12,13-dibutyrate; phorbol 12-myristate 13-acetate) did not enhance enzyme activity or exocytosis. Finally, exposure to 1-O-hexadecyl-2-O-methyl-rac-glycerol, a compound known to inhibit protein kinase C, did not affect phospholipase A2 activity or acrosomal exocytosis. We therefore conclude that in spermatozoa the messenger role of DAG is related to the activation of phospholipase A2, which in turn would generate an array of metabolites directly or indirectly involved in bringing about exocytosis of the acrosome.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3