A novel Ca2+-induced Ca2+ release mechanism mediated by neither inositol trisphosphate nor ryanodine receptors

Author:

WISSING Frank1,NEROU Edmund P.1,TAYLOR Colin W.1

Affiliation:

1. Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QJ, U.K.

Abstract

Members of both major families of intracellular Ca2+ channels, ryanodine and inositol 1,4,5-trisphosphate (IP3) receptors, are stimulated by substantial increases in cytosolic free Ca2+ concentration ([Ca2+]c). They thereby mediate Ca2+-induced Ca2+ release (CICR), which allows amplification and regenerative propagation of intracellular Ca2+ signals. In permeabilized hepatocytes, increasing [Ca2+]c to 10μM stimulated release of 30±1% of the intracellular stores within 60s; the EC50 occurred with a free [Ca2+] of 170±29nM. This CICR was abolished at 2°C. The same fraction of the stores was released by CICR before and after depletion of the IP3-sensitive stores, and CICR was not blocked by antagonists of IP3 receptors. Ryanodine, Ruthenium Red and tetracaine affected neither the Ca2+ content of the stores nor the CICR response. Sr2+ and Ba2+ (EC50 = 166nM and 28μM respectively) mimicked the effects of increased [Ca2+] on the intracellular stores, but Ni2+ blocked the passive leak of Ca2+ without blocking CICR. In rapid superfusion experiments, maximal concentrations of IP3 or Ca2+ stimulated Ca2+ release within 80ms. The response to IP3 was complete within 2s, but CICR continued for tens of seconds despite a slow [half-time (t1/2) = 3.54±0.07s] partial inactivation. CICR reversed rapidly (t1/2 = 529±17ms) and completely when the [Ca2+] was reduced. We conclude that hepatocytes express a novel temperature-sensitive, ATP-independent CICR mechanism that is reversibly activated by modest increases in [Ca2+], and does not require IP3 or ryanodine receptors or reversal of the sarcoplasmic/endoplasmic-reticulum Ca2+-ATPase. This mechanism may both regulate the Ca2+ content of the intracellular stores of unstimulated cells and allow even small intracellular Ca2+ signals to be amplified by CICR.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3