Syncollin inhibits regulated corticotropin secretion from AtT-20 cells through a reduction in the secretory vesicle population

Author:

WÄSLE Barbara1,HAYS Lori B.2,RHODES Christopher J.2,EDWARDSON J. Michael1

Affiliation:

1. Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge CB2 1PD, U.K.

2. Pacific Northwest Research Institute, 720 Broadway, Seattle, WA 98122, U.S.A.

Abstract

Syncollin is a 13 kDa protein that is highly expressed in the exocrine pancreas. Syncollin normally exists as a doughnut-shaped homo-oligomer (quite probably a hexamer) in close association with the luminal surface of the zymogen granule membrane. In the present study, we examine the effect of expression of syncollin in AtT-20 neuroendocrine cells, which do not normally express this protein. Efficient expression was achieved by infection of the cells with adenoviral constructs encoding either untagged or GFP (green fluorescent protein)-tagged syncollin. Both forms of the protein were sorted into corticotropin (ACTH)-positive secretory vesicles present mainly at the tips of cell processes. Neither form affected basal corticotropin secretion or the constitutive secretion of exogenously expressed secreted alkaline phosphatase. In contrast, regulated secretion of corticotropin was inhibited (by 49%) by untagged but not by GFP-tagged syncollin. In parallel, untagged syncollin caused a 46% reduction in the number of secretory vesicles present at the tips of the cell processes. Syncollin–GFP was without effect. We could also show that native syncollin purified from rat pancreas was capable of permeabilizing erythrocytes. We suggest that syncollin may induce uncontrolled permeabilization of corticotropin-containing vesicles and subsequently destabilize them. Both forms of syncollin were tightly membrane-associated and appeared to exist as homooligomers. Hence, the lack of effect of syncollin–GFP on regulated exocytosis suggests that the GFP tag interferes in a subtler manner with the properties of the assembled protein.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3