A77 1726 (leflunomide) blocks and reverses cardiac hypertrophy and fibrosis in mice

Author:

Ma Zhen-Guo123,Zhang Xin123,Yuan Yu-Pei123,Jin Ya-Ge123,Li Ning123,Kong Chun-Yan123,Song Peng123,Tang Qi-Zhu123

Affiliation:

1. Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, P.R. China

2. Cardiovascular Research Institute of Wuhan University, Wuhan 430060, P.R. China

3. Hubei Key Laboratory of Cardiology, Wuhan 430060, P.R. China

Abstract

T-cell infiltration and the subsequent increased intracardial chronic inflammation play crucial roles in the development of cardiac hypertrophy and heart failure (HF). A77 1726, the active metabolite of leflunomide, has been reported to have powerful anti-inflammatory and T cell-inhibiting properties. However, the effect of A77 1726 on cardiac hypertrophy remains completely unknown. Herein, we found that A77 1726 treatment attenuated pressure overload or angiotensin II (Ang II)-induced cardiac hypertrophy in vivo, as well as agonist-induced hypertrophic response of cardiomyocytes in vitro. In addition, we showed that A77 1726 administration prevented induction of cardiac fibrosis by inhibiting cardiac fibroblast (CF) transformation into myofibroblast. Surprisingly, we found that the protective effect of A77 1726 was not dependent on its T lymphocyte-inhibiting property. A77 1726 suppressed the activation of protein kinase B (AKT) signaling pathway, and overexpression of constitutively active AKT completely abolished A77 1726-mediated cardioprotective effects in vivo and in vitro. Pretreatment with siRNA targetting Fyn (si Fyn) blunted the protective effect elicited by A77 1726 in vitro. More importantly, A77 1726 was capable of blocking pre-established cardiac hypertrophy in mice. In conclusion, A77 1726 attenuated cardiac hypertrophy and cardiac fibrosis via inhibiting FYN/AKT signaling pathway.

Publisher

Portland Press Ltd.

Subject

General Medicine

Cited by 37 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3