Cadmium-binding proteins of rat testes. Characterization of a low-molecular-mass protein that lacks identity with metallothionein

Author:

Waalkes M P,Chernoff S B,Klaassen C D

Abstract

Cadmium-binding proteins in the cytosol of testes from untreated rats were separated by Sephadex G-75 gel filtration. Three major testicular metal-binding proteins (TMBP), or groups of proteins, with relative elution volumes of approx. 1.0 (TMBP-1), 1.7 (TMBP-2) and 2.4 (TMBP-3) were separated. Elution of Zn-binding proteins exhibited a similar pattern. TMBP-3 has previously been thought to be metallothionein (MT), and hence this protein was further characterized and compared with hepatic MT isolated from Cd-treated rats. Estimation of Mr by gel filtration indicated a slight difference between MT (Mr 10000) and TMBP-3 (Mr 8000). Two major forms of MT (MT-I and MT-II) and TMBP-3 (TMBP-3 form I and TMBP-3 form II) were obtained after DEAE-Sephadex A-25 anion-exchange chromatography, with the corresponding subfractions being eluted at similar conductances. Non-denaturing polyacrylamide-gel electrophoresis on 7% acrylamide gels indicated that the subfractions of TMBP-3 had similar mobilities to those of the corresponding subfractions of MT. However, SDS (sodium dodecyl sulphate)/12% (w/v)-polyacrylamide-gel electrophoresis resulted in marked differences in migration of the two corresponding forms of MT and TMBP-3. Co-electrophoresis of MT-II and TMBP-3 form II by SDS/polyacrylamide-gel electrophoresis revealed two distinct proteins. Amino acid analysis indicated much lower content of cysteine in the testicular than in the hepatic proteins. TMBP-3 also contained significant amounts of tyrosine, phenylalanine and histidine, whereas MT did not. U.v.-spectral analysis of TMBP-3 showed a much lower A250/A280 ratio than for MT. Thus this major metal-binding protein in testes, which has been assumed to be MT is, in fact, a quite different protein.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3