Proton transfer in the mechanism of polyadenylate polymerase

Author:

Balbo Paul B.1,Bohm Andrew1

Affiliation:

1. Tufts University School of Medicine and the Sackler School of Graduate Biomedical Sciences, Department of Biochemistry, 136 Harrison Avenue, Boston, MA 02111, U.S.A.

Abstract

PAP (polyadenylate polymerase) is the template-independent RNA polymerase responsible for synthesis of the 3′ poly(A) tails of mRNA. To investigate the role of proton transfer in the catalytic mechanism of PAP, the pH dependence of the steady-state kinetic parameters of yeast PAP were determined for the forward (adenyl transfer) and reverse (pyrophosphorolysis) reactions. The results indicate that productive formation of an enzyme–RNA–MgATP complex is pH independent over a broad pH range, but that formation of an active enzyme–RNA–MgPPi complex is strongly pH dependent, consistent with the production of a proton on the enzyme in the forward reaction. The pH dependence of the maximum velocity of the forward reaction suggests two protonic species are involved in enzyme catalysis. Optimal enzyme activity requires one species to be protonated and the other deprotonated. The deuterium solvent isotope effect on Vmax is also consistent with proton transfer involved in catalysis of a rate-determining step. Finally, pKa calculations of PAP were performed by the MCCE (multiconformational continuum electrostatic) method. Together, the data support that the protonation of residues Lys215 and Tyr224 exhibit co-operativity that is important for MgATP2− and MgPPi2− binding/dissociation, and suggest these residues function in electrostatic, but not in general acid, catalysis.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3