Polyunsaturated fatty acid enrichment enhances endothelial cell-induced low-density-lipoprotein peroxidation

Author:

MAZIÈRE Cécile1,DANTIN Françoise1,CONTE Marie-Alix1,DEGONVILLE James1,ALI Dany1,DUBOIS Françoise1,MAZIÈRE Jean-Claude1

Affiliation:

1. Laboratoire de Biochimie, Hôpital Nord, Université de Picardie Jules Verne, 80054 Amiens Cedex 01, France

Abstract

Oxidative modification of low-density lipoprotein (LDL) is an important feature in the initiation and progression of atherosclerosis. LDL modification by endothelial cells was studied after supplementation of the cells with oleic acid and polyunsaturated fatty acids (PUFA) of the n-6 and n-3 series. In terms of the lipid peroxidation product [thiobarbituric acid reactive substances (TBARS)] content and diene level of the LDL particle, oleic acid had no significant effect, and linoleic acid was poorly effective. Gamma linolenic acid (C18:3, n-6) and arachidonic acid (C20:4, n-6) increased by about 1.6–1.9-fold the cell-mediated LDL modification. PUFA from the n-3 series, alpha linolenic acid (C18:3, n-3), eicosapentaenoic acid (C20:5, n-3) and docosahexaenoic acid (C22:6, n-3), induced a less marked effect (1.3–1.6-fold increase). The relative electrophoretic mobility of the LDL particle and its degradation by macrophages were enhanced in parallel. Concomitantly, PUFA stimulated superoxide anion secretion by endothelial cells. The intracellular TBARS content was also increased by PUFA. Comparison of PUFA from the two series indicates a good correlation between LDL oxidative modification, superoxide anion secretion and intracellular lipid peroxidation. The lipophilic antioxidant vitamin E decreased the basal as well as the PUFA-stimulated LDL peroxidation. These results indicate that PUFAs with a high degree of unsaturation of the n-6 and n-3 series could accelerate cell-mediated LDL peroxidation and thus aggravate the atherosclerotic process.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

Cited by 36 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3