Affiliation:
1. Laboratoire de Biochimie, Hôpital Nord, Université de Picardie Jules Verne, 80054 Amiens Cedex 01, France
Abstract
Oxidative modification of low-density lipoprotein (LDL) is an important feature in the initiation and progression of atherosclerosis. LDL modification by endothelial cells was studied after supplementation of the cells with oleic acid and polyunsaturated fatty acids (PUFA) of the n-6 and n-3 series. In terms of the lipid peroxidation product [thiobarbituric acid reactive substances (TBARS)] content and diene level of the LDL particle, oleic acid had no significant effect, and linoleic acid was poorly effective. Gamma linolenic acid (C18:3, n-6) and arachidonic acid (C20:4, n-6) increased by about 1.6–1.9-fold the cell-mediated LDL modification. PUFA from the n-3 series, alpha linolenic acid (C18:3, n-3), eicosapentaenoic acid (C20:5, n-3) and docosahexaenoic acid (C22:6, n-3), induced a less marked effect (1.3–1.6-fold increase). The relative electrophoretic mobility of the LDL particle and its degradation by macrophages were enhanced in parallel. Concomitantly, PUFA stimulated superoxide anion secretion by endothelial cells. The intracellular TBARS content was also increased by PUFA. Comparison of PUFA from the two series indicates a good correlation between LDL oxidative modification, superoxide anion secretion and intracellular lipid peroxidation. The lipophilic antioxidant vitamin E decreased the basal as well as the PUFA-stimulated LDL peroxidation. These results indicate that PUFAs with a high degree of unsaturation of the n-6 and n-3 series could accelerate cell-mediated LDL peroxidation and thus aggravate the atherosclerotic process.
Subject
Cell Biology,Molecular Biology,Biochemistry
Cited by
36 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献