Compartmentation of acetyl CoA studied by analysis of tricarboxylic acid cycle acids and 3-hydroxybutyrate in bile of rats given [2,2,2-2H3]ethanol

Author:

Norsten C1,Cronholm T1

Affiliation:

1. Department of Physiological Chemistry, Karolinska Institute, S-104 01 Stockholm, Sweden

Abstract

Acetate, 3-hydroxybutyrate, pyruvate, lactate, citrate, 2-oxoglutarate, succinate, fumarate and malate were analysed in rat bile by gas chromatography and gas chromatography/mass spectrometry of their O-melthyloxime-t-butyldimethylsilyl derivatives. The concentration of acetate increased to about 1.8 mmol/l after administration of [2,2,2-2H3]ethanol. Acetate was formed from ethanol to an extent of about 82% and retained all of the 2H at C-2, whereas 15% of the 2H had been lost in the tricarboxylic acid cycle intermediates and 24% in 3-hydroxybutyrate. Thus the exchange of 2H for 1H takes place after formation of acetyl CoA. For citrate and 3-hydroxybutyrate, 41% and 11% respectively was formed from [2,2,2-2H3]ethanol. These results indicate that different pools of acetyl CoA are used for the synthesis of ketone bodies and citrate, with the latter being derived from ethanol to a much larger extent. Smaller fractions of 2-oxoglutarate (16%) and succinate (5%) were derived from [2,2,2--2H3]ethanol, indicating significant contributions from amino acids.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Regulation of fatty acid oxidation in mammalian liver;Biochimica et Biophysica Acta (BBA) - Lipids and Lipid Metabolism;1993-04

2. Transfer of deuterium from [1,1-2H2]ethanol to steroids and organic acids in the rat testis;Biochemical Journal;1992-08-15

3. Acetaldehyde as a substrate for ethanol-inducible cytochrome P450 (CYP2E1);Biochemical and Biophysical Research Communications;1991-08

4. Polydeuterated compounds in metabolic studies;Analytica Chimica Acta;1991-07

5. Metabolism of [2-14C]acetate and its use in assessing hepatic Krebs cycle activity and gluconeogenesis.;Journal of Biological Chemistry;1991-04

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3