Differential control of murine aldose reductase and fibroblast growth factor (FGF)-regulated-1 gene expression in NIH 3T3 cells by FGF-1 treatment and hyperosmotic stress

Author:

HSU Debbie K. W.1,GUO Yan1,PEIFLEY A. Kimberly1,WINKLES A. Jeffrey12

Affiliation:

1. Department of Molecular Biology, Holland Laboratory, American Red Cross, 15601 Crabbs Branch Way, Rockville, MD 20855, U.S.A.

2. Department of Biochemistry and Molecular Biology and the Institute for Biomedical Sciences, George Washington University Medical Center, Washington DC 20037, U.S.A.

Abstract

Aldose reductase (AR) is an NADPH-dependent aldo-keto reductase implicated in cellular osmoregulation and detoxification. Two distinct murine genes have been identified that are predicted to encode proteins with significant amino acid sequence identity with mouse AR: mouse vas deferens protein and fibroblast growth factor (FGF)-regulated-1 protein (FR-1). Here we report that the AR and FR-1 genes are differentially regulated in NIH 3T3 fibroblasts. FGF-1 stimulation of quiescent cells induces both AR and FR-1 mRNA levels, but the effect on FR-1 mRNA expression is significantly greater. FGF-1 treatment also increases FR-1 protein expression, as determined by Western-blot analysis using FR-1-specific polyclonal antiserum. Calf serum stimulation of quiescent cells increases AR mRNA expression but not FR-1 mRNA expression. Finally, when NIH 3T3 cells are grown in hypertonic medium, AR mRNA levels are significantly increased whereas FR-1 mRNA levels are only slightly up-regulated. These results indicate that the AR and FR-1 genes are differentially regulated in murine fibroblasts by two different growth-promoting agents and by hyperosmotic stress. Therefore these structurally related enzymes may have at least some distinct cellular functions; for example, although both AR and FR-1 activity may be important for the metabolic changes associated with cellular proliferation, AR may be the primary aldo-keto reductase involved in cellular osmoregulation.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

Cited by 25 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3