Effects of the human papilloma virus HPV-16 E7 oncoprotein on glycolysis and glutaminolysis: role of pyruvate kinase type M2 and the glycolytic-enzyme complex

Author:

MAZUREK Sybille1,ZWERSCHKE Werner23,JANSEN-DÜRR Pidder23,EIGENBRODT Erich1

Affiliation:

1. Institute for Biochemistry and Endocrinology, Veterinary Faculty, University of Giessen, Frankfurter Strasse 100, D-35392 Giessen, Germany

2. Institute for Biomedical Ageing Research, Austrian Academy of Sciences, Rennweg 10, A-6020 Innsbruck, Austria

3. Tiroler Krebsforschungszentrum, Innrain 66, A-6020 Innsbruck, Austria

Abstract

Proliferating and tumour cells express the glycolytic isoenzyme, pyruvate kinase type M2 (M2-PK), which occurs in a highly active tetrameric form and in a dimeric form with low affinity for phosphoenolpyruvate. The switch between the two forms regulates glycolytic phosphometabolite pools and the interaction between glycolysis and glutaminolysis. In the present study, we show the effects of oncoprotein E7 of the human papilloma virus (HPV)-16 (E7)-transformation on two NIH 3T3 cell strains with different metabolic characteristics. E7-transformation of the high glycolytic NIH 3T3 cell strain led to a shift of M2-PK to the dimeric form and, in consequence, to a decrease in the cellular pyruvate kinase mass-action ratio, the glycolytic flux rate and the (ATP+GTP)/(UTP+CTP) ratio, as well as to an increase in fructose 1,6-bisphosphate (FBP) levels, glutamine consumption and cell proliferation. The low glycolytic NIH 3T3 cell strain is characterized by high pyruvate and glutamine consumption rates and by an intrinsically large amount of the dimeric form of M2-PK, which is correlated with high FBP levels, a low (ATP+GTP)/(CTP+UTP) ratio and a high proliferation rate. E7-transformation of this cell strain led to an alteration in the glycolytic-enzyme complex that correlates with an increase in pyruvate and glutamine consumption and a slight increase in the flow of glucose to lactate. The association of phosphoglyceromutase within the glycolytic-enzyme complex led to an increase of glucose and serine consumption and a disruption of the linkage between glucose consumption and glutaminolysis. In both NIH 3T3 cell lines, transformation increased glutaminolysis and the positive correlation between alanine and lactate production.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3