Antagonism of PI 3-kinase-dependent signalling pathways by the tumour suppressor protein, PTEN

Author:

Downes C. P.1,Bennett D.1,McConnachie G.1,Leslie N. R.1,Pass I.1,MacPhee C.2,Patel L.2,Gray A.2

Affiliation:

1. Division of Cell Signalling, School of Life Sciences, University of Dundee, Dundee DDI 5EH, U.K.

2. GlaxoSmithKline, New Frontier Science Park, Third Avenue, Harlow, Essex CM 19 5AW, U.K.

Abstract

The tumour suppressor protein, PTEN (phosphatase and tensin homologue deleted on chromosome 10) is a member of the mixed function, serine/threonine/tyrosine phosphatase subfamily of protein phosphatases. Its physiological substrates, however, are primarily 3-phosphorylated inositol phospholipids, which are products of phosphoinositide 3-kinases. PTEN thus antagonizes PI 3-kinase-dependent signalling pathways, which explains to a large extent its tumour suppressor status. We have examined the kinetic behaviour, substrate specificity and regulation of PTEN both in vitro and in a variety of cellular models. Although PTEN can utilize both phosphatidylinositol 3,4,5-trisphosphate [PtdIns-(3,4,5)P3] and its water-soluble headgroup, inositol 1,3,4,5-tetrakisphosphate, as substrates, it displays classical features of interfacial catalysis, which greatly favour the lipid substrate (by as much as 1000-fold as judged by Kcat/Km values). Expression of PTEN in U87 cells (which lack endogenous PTEN) and measuring the levels of all known 3-phosphorylated lipids suggests that phosphatidylinositol 3,4-bisphosphate and PtdIns(3,4,5)P3 are both substrates, but that phosphatidylinositol 3-phosphate and phosphatidyl-inositol 3,5-bisphosphate are not. PTEN binds to several PDZ-domain-containing proteins via a consensus sequence at its extreme C-terminus. Disruption of targeting to PDZ-domain proteins selectively blocks some PTEN functions, but not others, suggesting the existence of spatially localized, functionally dedicated pools of signalling lipids. We have also shown recently that PTEN expression is controlled at the transcriptional level and is profoundly upregulated by peroxisome proliferator activated receptor γ agonists, thereby providing possible implications for these drugs in diabetes, inflammation and cancer.

Publisher

Portland Press Ltd.

Subject

Biochemistry

Cited by 48 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3