Regulation of de novo sphingolipid biosynthesis and the toxic consequences of its disruption

Author:

Linn S. C.1,Kim H. S.1,Keane E. M.1,Andras L. M.1,Wang E.1,Merrill A. H.1

Affiliation:

1. Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322, U.S.A.

Abstract

Complex sphingolipids are ‘built’ on highly bio-active backbones (sphingoid bases and ceramides) that can cause cell death when the amounts are elevated by turnover of complex sphingolipids, disruption of normal sphingolipid metabolism, or over-induction of sphingolipid biosynthesis de novo. Under normal conditions, it appears that the bioactive intermediates of this pathway (3-keto-sphinganine, sphinganine and ceramides) are kept at relatively low levels. Both the intrinsic activity of serine palmitoyltransferase (SPT) and the availability of its substrates (especially palmitoyl-CoA) can have toxic consequences for cells by increasing the production of cytotoxic intermediates. Recent work has also revealed that diverse agonists and stresses (cytokines, UV light, glucocorticoids, heat shock and toxic compounds) modulate SPT activity by induction of SPTLC2 gene transcription and/or post-translational modification. Mutation of the SPTLC1 component of SPT has also been shown to cause hereditary sensory neuropathy type I, possibly via aberrant oversynthesis of sphingolipids. Another key step of the pathway is the acylation of sphinganine (and sphingosine in the recycling pathway) by ceramide synthase, and up-regulation of this enzyme (or its inhibition to cause accumulation of sphinganine) can also be toxic for cells. Since it appears that most, if not all, tissues synthesize sphingolipids de novo, it may not be surprising that disruption of this pathway has been implicated in a wide spectrum of disease.

Publisher

Portland Press Ltd.

Subject

Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3