Hepatic intralobular mapping of fructose metabolism in the rat liver

Author:

BURNS Shamus P.1,MURPHY Helena C.1,ILES Richard A.1,BAILEY Rosemary A.2,COHEN Robert D.1

Affiliation:

1. Cell Regulation Unit, Department of Diabetes and Metabolic Medicine, 5th Floor Alexandra Wing, St Bartholomew's and The Royal London School of Medicine and Dentistry, Whitechapel Road, London E1 1BB, U.K.

2. School of Mathematical Sciences, Queen Mary and Westfield College, London E1 4NS, U.K.

Abstract

Detailed mapping of glucose and lactate metabolism along the radius of the hepatic lobule was performed in situ in rat livers perfused with 1.5 mM lactate before and during the addition of 5 mM fructose. The majority of fructose uptake occurred in the periportal region; 45% of fructose taken up in the periportal half of the lobular volume being converted into glucose. Periportal lactate uptake was markedly decreased by addition of fructose. Basal perivenous lactate output, which was derived from glucose synthesized periportally, was increased in the presence of fructose. During fructose infusion there was a small decrease in cell pH periportally, but acidification of up to 0.5 pH units perivenously. The evidence suggests that in situ the apparent direct conversion of fructose into lactate represents, to a substantial extent, the result of periportal conversion of fructose into glucose and the subsequent uptake and glycolysis to lactate in the perivenous zone of some of that glucose. 31P NMR spectroscopy showed that the cellular concentration of phosphomonoesters changes very little periportally during fructose infusion, but there was an approximate twofold increase perivenously, presumably due to the accumulation of fructose 1-phosphate. It may be inferred that fructokinase activity is expressed throughout the hepatic lobule.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3